
General guide to the Radboud computer cluster
Written by Astraea Blonk, June 19 2021

If researchers and students at Radboud University want to run large or heavy scripts that can’t be 
handled by their own PCs, they are allowed to access the Radboud computer cluster remotely, upload 
their script there and tell one of those computers: “please run this script for me”. I will explain each of 
the steps necessary to do so in this document.

First, an important thing to note is that these computers have no graphical interface (as far as I know). 
This means we’ll have to resort to the Command Prompt/cmd (Windows) or Terminal (Mac/Linux).
You should be able to open the Command Prompt in Windows 10 by using the search bar in the lower 
left corner on the screen. A guide for opening the Terminal on Mac can be found here.

The Command Prompt and the Terminal are examples of Command Line Interfaces (CLIs). For those
who have never worked with a CLI before; this may sound like a name for something really complex, 
but the concept is actually fairly simple if you know how a regular computer works (which you should 
if you’re reading this): instead of a “graphical interface” - where you have your background with icons 
that you can click on to start programs - we now have a “command line interface”: a black screen in 
which we start programs by directly typing “commands”. No mouse clicks needed.

Picture 1: an example of what a CLI might look like (on Linux)

You can do the same things with a CLI as with a regular graphical interface. For example, during 
normal computer usage we might want to open Windows Explorer (or a similar Max/Linux program) 
and look through our files. We can do the same thing on a CLI. Try, for example, typing ls (and then 
pressing <enter>). This command name is short for “list” and tells your pc to show a list of file names 

https://www.wikihow.com/Get-to-the-Command-Line-on-a-Mac


and directory names in the current directory. By default, the CLI starts in your home directory, so the ls 
command shows a list of files in your home directory, but you can change to a different directory by 
typing cd, followed by the name of directory you want to go to. For instance, typing cd Downloads 
should bring us to the Downloads folder (if this doesn’t work because you don’t have a Downloads 
folder, try another directory from the list of files shown by ls). If this was successful, you can type in 
the command ls again, and it should show a different list of file names now! Woooow, magic…

Picture 2: what a CLI could look like after using “ls” and “cd”. If you use this command yourself, you should see the names of your own files, instead of 
the ones on my pc.

With the basics of using a CLI out of the way, we can turn to our specific use case: accessing and 
running files on the Radboud computer cluster. There are more useful commands other than just ls and 
cd, but I will talk about those later in this guide, when each of them becomes relevant. I will also be 
putting a table at the end of this document with a list of all commands used in this guide and a short 
description of how to use them.

Anyhow, when you used cd to go to a different directory, you might have noticed that the thingy on the 
left side of the screen, which is shown just left to the place where you can type in your commands, has 
changed. This thing is called a prompt and it tells you some basic information about who is using the 
CLI and what directory you are in. We will see that the prompt will also change when we start 
accessing the Radboud computer cluster. This is because, in order to upload/download files and run 
scripts on one of the Radboud computers, we have to make a remote connection to it, and once we 
have created that connection, we can type commands like ls and cd on the remote computer as if we 
were typing them on our own computer. You will see what I mean in a second. First, let’s create the 
connection. This can be done using the ssh command, followed by the name of the computer that you
want to access. For this guide, I will assume that you want to use the computer 



blossomforth.science.ru.nl1. However, trying to type ssh blossomforth.science.ru.nl will give you an 
error. This is because of the way the Radboud computer cluster is set up: we have to log in through a 
login server first, before we can create a connection to either blossomforth.science.ru.nl. To connect to 
the login server, we can type ssh <username>@applejack.science.ru.nl, where <username> is to be 
replaced by your personal science login username. For example, if I personally want to login, I would 
type ssh ablonk@applejack.science.ru.nl, but for you the command should look slightly differently, 
depending on the username of your science login credentials.
When you’ve succesfully used the command I described above using your own username, you may get 
a complicated sounding message about authenticating the remote host – just type in “yes” if you get 
that, it should only appear the first time you try to log in – followed by a “password:” prompt. This is 
when we type in the login password associated with our science login. NB: the CLI will not provide 
any indication that you are typing your password. No dots or anything. This is okay, you can just 
type your password without the screen changing, hit <enter>, and everything should work (that is, if 
you put in the right password).

A quick side note, feel free to skip this: if you realize you’ve made a mistake while typing your password but have already pressed the 
<enter> button, you would normally have to wait for the login verification process to fail before you can try out your actual password. 
However, you can always terminate (stop) ongoing commands that a computer is executing by using <CTRL>+C or COMMAND+C. 
This will abort the login verification process and allow you to type new commands. You can then input the ssh command again to get a 
new try at typing your password. You can also just wait for the login verification process to fail and it should give you a new chance to to 
put in your password as well.

Picture 3: logging in to the Radboud login server Applejack.

When you’ve entered a correct combination of science login username and password, you will enter a 
connection with the Radboud login server, “applejack.science.ru.nl”. You will know this to have 
worked when you see a picture of Applejack from My Little Pony. Congratulations, you’ve made a 
connection to a remote computer, and can give it commands just like you would be able to on your own
PC! However, Radboud has a lot of different computers, and this particular computer is just a login 
server, and not the computer that was actually designated to us to do heavy computations. For that, we 

1 See also https://ponyland.science.ru.nl/doku.php?id=wiki:ponyland:about for a list of available computers.

https://ponyland.science.ru.nl/doku.php?id=wiki:ponyland:about


will have to switch to the computer we did choose for this job, in this case 
“blossomforth.science.ru.nl”. We can do so by typing ssh blossomforth.science.ru.nl. I mentioned this 
command before, but it didn’t work because we weren’t logged in. Now that we are logged in, typing 
this command should give us a new connection to a computer that we may use for heavy computations.

Picture 4: Entering a connection with the server that we are actually allowed to use.

Et voìla! If you see a picture of Blossomforth from My Little Pony, you will know you are in the right 
place, and you should be able to enter commands like ls or cd to travel around this computer. Let’s first 
go to a place on the disk where we can store our files. Language and speech researchers are allowed to 
create a directory for their files in either of the folders “tensusers”, “tensusers2”, “tensusers3”, 
“tensusers4” or “tensusers5”. For this guide, we will assume you want to store your files in 
“tensusers5”. To do so, type “cd /vol/tensusers5/” to navigate to the overarching folder. You can then 
make a new (sub)directory by typing mkdir <name> and replacing <name> with the name of the 
directory that you want to create; in this case, it’s best to use your science login username. If 
everything went well, you should be able to type ls and see that the new directory that you just conjured
into existence has been added to the list!



Picture 5: Creating your own directory on the server

All nice and well, but how do we upload our scripts to this new directory? The good news is: there is a 
command to do that called scp! The bad news is: we can’t use it while we’re connected to the Radboud 
computer. We’ll have to log out and get back to our own PC first. To abort the remote connection, type 
exit twice. The first exit should bring you back to the applejack.science.ru.nl computer (which we used 
to login), and the second exit disconnects you from the login server and brings you back to the place 
where you can issue commands to your own computer. From here, we can upload scripts to the 
Radboud computers by typing scp <path-to-script-on-pc> 
<username>@applejack.science.ru.nl:<path-to-upload-directory>. This may look complicated, so 
I’ll give an example: if I want to upload a script called “test.py” which is saved in directory “C:\Users\
Astraea\Research\” and upload that to my personal directory on the Radboud computer 
(“/vol/tensusers5/ablonk/”), the command that I’d use would look like this: scp C:\Users\Astraea\
Research\test.py ablonk@applejack.science.ru.nl:/vol/tensusers5/ablonk/. If you ever need to do this 
yourself, just copy the template that I described above and make sure to replace (1) <path-to-script-
on-pc>, (2) <username> and (3) <path-to-upload-directory> with (1) the path to the file you want 
to upload, (2) your science login username, and (3) the path to your directory on the Radboud 
computer, respectively.
Running the above command or a similar command will ask me to enter my password (twice), and 
possibly, to authenticate the remote host, just like with the ssh command. Under the hood, scp actually 
creates a temporary ssh connection to send the files from your local PC to the Radboud computer, but 
that’s some technical detail that you don’t need to remember. When you finish typing in your password,
the CLI will say that it’s uploading the file, along with a percentage. This percentage should reach 
100% pretty quickly (if your file isn’t too large), and when it does, you’ll get your prompt back and you
can continue your command typing journey.

Picture 6: Uploading your own file to the server

Now that we’ve uploaded our script, it’s time to tell the Radboud computer to run it. First, we need to 
log in to applejack.science.ru.nl and switch to blossomoforth.science.ru.nl using the ssh command that 
I described earlier. You can check if your script has been uploaded by changing to your personal 
directory and typing ls, which should now show that your directory contains one file called “test.py” 
(or whatever the name of your own script was).
Before we can run this script, we should check if the computer is busy using the command htop. Using 
this command will open an overview of what the computer is doing; the upper half will show a list of 
32 processing components (called “cores”) and how busy they are, and the lower half will show a list 



of specific commands that the computer is currently trying to execute, along with some info about the 
user who typed in those commands, etc. This overview may look like it gives you a frightening amount 
of information at once, but it will suffice here to look only at the percentages shown in the upper half. 
If you see a lot of 0%s, it’s okay to use this computer. If all the percentages are close to 100%, someone
else is probably running their own heavy script already and it might be better to switch to another 
Radboud computer.

Picture 7: What using “htop” might look like

When you’ve found a computer with a reasonable amount of unused or barely used cores, you’re 
almost set to launch your script. We might just type in python3 <path-to-script> to run our script 
already, and this is fine if you’re planning to run a simple script, but when dealing with more 
complicated/heavy scripts, running this command straight away may result in some trouble. Let me just
give you 3 extra bits of advice which may come in handy when handling longer scripts:

1. Be nice. Or rather, use nice. This command tells the Radboud computer that the script we want 
to run has a low priority, and that if there’s anybody who is in a hurry to run something else 
they can use a command with a higher priority to temporarily take away your cores and return 
them when their script has finished. If you wanna run a script that you expect will be going on 
for multiple hours, I really suggest you use nice to prevent other computer users from getting 
mad at you because you’ve taken up all the processing power without them being able to run a 
short but urgent script in between :). To run a script the ‘nice’ way, type nice -19 python3 
<path-to-script>, with <path-to-script> being something like “/vol/tensusers5/ablonk/test.py”.

2. Use a screen. Normally, when you close the CLI, it disconnects from the Radboud computer 
and aborts whatever command or script you were trying to run. If you have a script that’s going 
to be running for a while, it might be annoying to have to keep your PC turned on and the CLI 
window open. To make sure we can turn off our computer at night and increase our chances of 
getting quality sleep time, we can create a virtual “screen” using the screen command. This 



will open an empty window where we can type in commands. Here, if we type nice -19 python3
<path-to-script> and then press <CTRL>+D or COMMAND+D, we will “detach” from our 
virtual screen and return to the place where we typed in the screen command. We can then use 
exit to disconnect from the Radboud computer and our virtual screen will make sure our 
command keeps running while we’re gone. To re-attach to a virtual screen (for example, to 
check if your script is working as intended or to see whether it’s finished already or not), 
connect with the computer where you originally created your screen session and type screen -r, 
with “-r” meaning “resume”. This will reopen the virtual screen in which you started your 
script. You can then detach from it again using <CTRL>+D/COMMAND+D or, if the script has
finished, you can type exit to destroy the screen.

3. Use virtual environments. Sometimes, when we want to run a script, the CLI will give us an 
error message saying that it “can’t find a module called ‘XXX’”, where XXX is the name of a 
specific Python module that your script depends on. We could. of course, run pip install XXX 
straight away to install the necessary module on the Radboud computer. However, the number 
of different Python libraries in existence is so enormous that if everyone did what I just 
described, the Radboud computers would soon be chock full of niche Python modules and there
would be no room for anyone to save their script or their output anymore. That’s why, if you 
need access to a module that’s not yet installed, you are advised to create a temporary “virtual 
environment” and install the module in there. When you’re done using your virtual 
environment, it can be deleted, along with all of the modules that were installed in there, freeing
up disk space for others to use.
To create a virtual environment, type python3 -m venv <environment-name>. <environment-
name> can be entirely random if you like, but I personally tend to make sure it refers at least 
slightly to the project that I’m using it for or the module that I want to install in there. After 
creating the virtual environment, we can activate (use) it by typing source <environment-
name>/bin/activate. We can then proceed to install those python modules that we got an error 
about using pip.



Picture 8: Executing a Python script on a screen, from a virtual environment, the nice way

And… that’s how you run a script on the Radboud computer cluster! I hope the most important aspects 
and commands associated with this process have been made clear to you. If not, you can send an e-mail
to admin@cls.ru.nl or consult the wiki. If you have a question about how to use one of the specific 
commands named in this document, you can also consult the list of commands on the final two pages 
of this document.
Oh, two more things: of course, there’s gonna be a point in time where your script has finished and has 
generated some output files. First, to download those output files, just use the scp command but with 
the order of the last two arguments arguments reversed: instead of using it like scp <path-to-script-on-
pc> <username>@applejack.science.ru.nl:<path-to-upload-directory>, use it like scp 
<username>@applejack.science.ru.nl:<path-to-output-directory> <path-to-project-directory-on-pc>. 
The penultimate argument denotes the place where the file should come from and the final argument 
describes where it should go, so, by playing around with the order, you can use this command to both 
upload files as well as to download them.
Second, if your script has finished, you’ve downloaded your output and you think it won’t be necessary
to keep the script/output on the Radboud computer cluster anymore, you can delete those unneeded 
files by navigating to their directory and typing rm <name-of-file>. This will remove the specified file 
and free up space for other users.

Have fun scripting!

https://ponyland.science.ru.nl/
mailto:admin@cls.ru.nl


List of commands

Command Description Examples

ls Shows a list of files and 
subdirectories that are inside the 
current directory.

ls

cd <name-of-directory> Change to a different directory cd Downloads

cd /vol/tensusers5/

ssh 
<username>@applejack.science.
ru.nl

Create a connection to the 
Radboud computer cluster login 
server.

ssh 
ablonk@applejack.science.ru.nl

ssh <name-of-computer> After logging in to the login 
server, this command can be 
used to connect to a different 
Radboud computer.

ssh blossomforth.science.ru.nl

mkdir <name-of-directory> Create a new subdirectory inside 
the current one.

mkdir ablonk

exit Use this to disconnect from a 
remote computer, destroy a 
screen, or close the CLI entirely.

exit

scp <path-to-script-on-pc> 
<username>@applejack.science.
ru.nl:<path-to-upload-directory>

Upload a file (such as a script) to
the Radboud computers from 
your PC.

scp C:\Users\Astraea\Research\
test.py 
ablonk@applejack.science.ru.nl:/
vol/tensusers5/ablonk/

htop Check whether the current 
computer is busy or not.

htop

python3 <path-to-script> Execute a Python script, the not 
so nice way.

python3 
/vol/tensusers5/ablonk/test.py

nice -19 python3 <path-to-
script>

Execute a Python script, the nice 
way.

nice -19 python3 /vol/tensusers5/
ablonk/test.py

screen Create a virtual screen (use 
<CTRL>+D/COMMAND+D to 
detach).

screen

screen -r Reattach to a virtual screen. screen -r

python3 -m venv <environment-
name>

Create a virtual environment python3 -m venv HelloWorld

source <environment-name>/bin/
activate

Activate a virtual environment source HelloWorld/bin/activate

pip install <module-name> Install a Python module, to be 
used in a script.

pip install pandas



scp 
<username>@applejack.science.
ru.nl:<path-to-output-directory> 
<path-to-project-directory-on-
pc>

Download a file (such as an 
output text file) from the 
Radboud computers to your PC.

scp 
ablonk@applejack.science.ru.nl:/
vol/tensusers5/ablonk/test_result
s.txt C:\Users\Astraea\Research\

rm <name-of-file> Delete a file. rm 
confusion_about_how_to_use_th
e_RU_computer_cluster.txt (get 
it? I explained how to do this in 
this document!)


